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Summary

Executive summary: This report summarizes the state of the art in requirements-
based variability modelling and abstract test case generation. It describes various
formalisms which have been described in the literature for feature modelling and the
modelling of variability, and presents methods for the generation of abstract test
cases from various informal, semi-formal and formal description techniques. Finally,
the report elaborates on available industrial and academic tools both for variability
modelling and model-based test generation.

Summary: The present report presents a survey of variability modelling and abstract
test case generation approaches for software projects. eature modelling is
introduced as the common denominator among variability modelling techniques,
which differ in notation (e.g. UML, XML) as well as in support for hierarchical
structures, constraints on feature combinations, representation of variation points and
other semantic characteristics. In contrast, abstract test generation methods are
distinguished by inputs, which may be source code, requirement specifications in
formal notation or natural language, UML diagrams, etc; how are tests generated,
either statically via input manipulation (which may involve Machine Learning or
Natural Language rocessing) or dynamically through e.g. model execution; and
whether test suites can run automatically or must be performed manually. It is noticed
there are remarkably few available references on test generation processes for
highly-variant and configurable systems. The report concludes with a review of tools
for variability modelling and system testing
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1 ntroduction

Reducing the amount of repeated work is a common pursuit in many areas, software
development among them. Copying libraries or source code from one project to the
next is a simple way to reduce implementation costs, however this is often done in an
ad hoc manner. In contrast, Software roduct Line Engineering (SLE) aims to
optimize development by enabling systematic asset reuse among systems sharing
common characteristics. It relies on variability modelling methods for the cataloging
of features, their dependencies and conflicts across a whole product line (i.e. a family
of systems), allowing the quick identification and application of related artifacts in new
projects.
Another important problem in software development is ensuring systems are properly
tested before deployment. This is commonly evaluated relative to some metric, for
example, how many different scenarios or what proportion of system features are
covered by the test suite. Theoretically the more comprehensive the coverage the
better, however in practice this has to be balanced against time and cost
considerations — in particular, the effort required to create the tests themselves. In
this regard automatic generation of test case suites from project artifacts — be it
requirements specifications, architecture models or source code — can greatly help
conserve resources while at the same time ensuring the quality of test cases. This is
especially desirable for software product lines, where depending on the number of
features and variety of possible combinations it may be impractical to maintain test
suites manually.
Variability modelling and test case generation can be seen as largely orthogonal
activities — the former focus primarily inwards into the feature structure of a whole
product line, while the latter mainly seeks to audit the outward behavior of specific
features or systems. On the other hand, the context of a family of systems related by
common features and a shared development history opens new frontiers for test
optimization: avoiding retesting the same feature across several products, or
evaluating how different combinations affect the performance of individual features,
become pertinent considerations. Moreover there may be advantages to adopting
variability modelling and test generation methods that work on the same artifact types
(e.g. UML diagrams), especially if the outputs of the former are used as inputs to the
latter. Therefore it is reasonable to evaluate both processes jointly.
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Within the XIVT project, the ambition of W3 is to develop a method and tool chain
for model-based testing of configurable and multi-variant systems. There are two
sides to this endeavor: Model-based testing, and modelling of configurable and multi-
variant systems. Consequently, this state-of-the-art report consists of two parts: In
the first, we discuss approaches to model variability in software-intensive systems. In
software product lines, feature models are used to describe commonalities and
differences between various products in the line. For UML, the unified modelling
language, specific extensions for variability modelling such as CVL, the common
variability language, have been suggested. In previous projects, also XML-based
languages such as VEL, the variability exchange language, have been defined.

In the second part, we review the huge amount of literature on the generation of
abstract test cases from various kinds of models. Some recent approaches are based
on machine learning, where supervised and unsupervised learning algorithms are
used to build models and extract useful patterns based on training data sets. Test
generation from natural language descriptions is still in its infancy; most of the work in
this area is focussed on informal use case descriptions, from which keywords and
exetion patterns are extracted to generate semi-formal artifacts. Many authors also
require that for the description of tests, natural language is only used in a controlled
or sytactically restricted way; different approaches, varying by the degree of
formalization of the input language have been proposed. Test generation from UML
models is the most advanced area, where mostly class diagrams and state machines
or sequence diagrams are used to model test cases. Implementation models such as
Simulink diagrams or Scade descriptions have also been used to generate test
cases; however, if both the implementation and the test suite are automatically
generated from the same model, the fault-detection capability of the test execution is
very limited. Dedicated test description languages such as TTCN-3 or data models
have been suggested, and are described in this deliverable. To conclude the second
part, we review the literature on mutation testing for variant-intensive systems, where
faults are artificially seeded into the application to assess the effectiveness of the
testing process.

The third part of this report deals with commercial and academic tools and
workbenches. Again, we present the two areas: tools for variability modelling, and
tools for test case generation from various types of models.

An extensive list of references concludes the report.
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2 Requirement-based Variability Modelling

On a conceptual level, there are two different modelling languages at the core of
most approaches: Feature Modelling (FM) and Orthogonal Variability Modelling
(OVM). While in principle they share most of their concepts and in most instances
even under the same name, there is one essential difference: Feature Modelling
provides a hierarchical decomposition of a system into features, denoted as a feature
tree and consisting of both common and variable parts. In contrast, OVM only
considers the variable parts of a system through the notions of variation points and
variants. In order to increase the interoperability of approaches based on these
languages, a transformation between FM and OVM models is proposed in [1].

2.1 Feature Modelling

Feature modelling is a procedure applied in product line software engineering.
roduct line software engineering aims to systematically manage commonalities and
differences in a product family, see [2] for an overview. The goal is to exploit the
commonalities for an economic production, i.e., to develop products from core assets
rather than one by one from scratch. It is founded on marketing; a product plan
derived from a market analysis is the primary input.
Feature modelling is the identification and classification of commonalities and
differences in a domain in terms of “product features”. A survey can be found in [3]
and [4]. An explicit representation of a product’s features has several advantages.
First, the concept of a feature as a common language enables effective
communication among stakeholders from different fields. Second, feature-oriented
domain analysis is an effective way to identify variability among different products in
a domain. Finally, feature models can provide a basis for developing, parametrizing,
and configuring various reusable assets and enables management and configuration
of multiple products in a domain.
In feature oriented domain analysis (FODA, see [1]), a feature is defined as a
prominent and distinctive user visible characteristic of a system/product. It is
distinguishable from functions, objects, and aspects in terms of identification
viewpoints: A feature is an externally visible characteristics that can differentiate one
product from another, while the former characteristics are identifiable from internal
viewpoints.
roduct features are identified and classified in terms of capabilities, domain
technologies, implementation techniques, and operating environments, see [3].
Features that are common between the different products are modelled as
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mandatory, selectable features as optional. Features are alternative if no more than
one feature can be selected for a product.
To capture structural or conceptual relationships between features, they are arranged
in a feature diagram. To create a feature diagram, the selection of a domain and
clarification of its boundaries is the first step. Then, the relevant features are
identified, organized, and refined.
There are three types of relationships that can be represented in such a diagram:
The composed-of relationship for a feature and its constituting subfeatures, the
generalization/specialization relationship if a feature is a generalization of a
subfeature, and the implemented-by relationship if one feature is necessary to
implement the other. The feature model can be supplemented with composition rules
or constraints that indicate mutual dependency and mutual exclusion relationships,
constraining the selection from optional and alternative features.
There exist extensions of the basic feature model concept, one of the most common
being cardinality based feature models, see, e.g., [5], where features or feature
groups are being assigned an UML-like cardinality [a..b], implementing mandatory
and optionality and allowing cloning of features or groups.

2.2 Variability Modelling in UML

UML is extensively used in the modelling community, and is a widely recognized
standard. During requirements analysis, use case diagrams help to identify the actors
and to establish the behavior of a system by means of use cases. UML defines a
small set of relationships to structure actors and use cases: extend, include, and
generalization, see, e.g. [6]. The extend relationship can model conditional optionality
of features, but the other variability types cannot be modelled directly with use case
diagrams. Therefore new use case modelling elements are needed to explicitly
express all types of variability described above. There are straightforward
approaches to expand the UML model in order to allow building feature models, see,
e.g., [7], [8].

However, in [9], it is emphasized that concepts and features in feature modelling are
abstracted from bearing semantic concepts. Hence, a simple extension of UML
based on stereotypes of classes and their relationships is ruled out. They therefore
propose to go to the UML meta-model in order to derive concepts and features from
more abstract elements without unwanted semantics. By deriving from meta-classes
and introducing certain stereotypes, they generate features and feature relationships.
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In [6], the use case meta-model is extended by the new relationships option and
alternative. If the base and extension use case are in the option relationship, the
behavior of the base use case may be executed in the extension use case. If they
are in the alternative relationship, exactly one alternative use case must be executed.
In [10], a similar approach is pursued by allowing use cases to be marked with an
option stereotype, and the extend relationship to be marked with stereotypes
alternative and specialization.
Nonetheless, in [6], it is mentioned that use cases can only model system behavior,
not static structures and characteristics of systems, Therefore, a combination of
feature graphs and extended use case diagrams is proposed.

Resulting from a standardization effort by the OMG, the Common Variability
Language (CVL) was intended to provide consistent variability modelling capabilities
for diverse Domain Specific Languages (DSL) independent from the specific
language of the base model. According to informed but unverifiable sources,
standardization activities were discontinued because of patent issues. However, CVL
has already been presented at conferences [11], [12] and was subject to evaluation
with regard to its usability in [13]. A detailed description of CVL as well as three
examples of its application to different DSLs, i.e. ARI, TCL and UML, is given in [14].
Further, there is an adaption of CVL for specific industrial use cases resulting from
the VARIES project and the DREAMS project [15], called Better Variability Results
(BVR) and presented in [16].

Another approach to modelling variants in the context of systems engineering is
presented in [17]. While technically not based on UML but SysML’s customized
subset of UML, it uses the UML profile mechanism to extend UML with variant
modelling capabilities. For that purpose, the SYSMOD profile is used, containing a
set of stereotypes that reflect concepts from OVM, which serves as the theoretical
foundation.

2.3 XML - Variability Exchange Language

The Variability Exchange Language [18] has been developed within the German
SES_XT project as a standardized format to exchange information about variability
between different stakeholders. It is an XML based data exchange format for different
software engineering tasks. Tools for variant management frequently interact with
artifacts such as model based specifications, program code, or requirements
documents. This is often a two-way communication: variant management tools import
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variability information from an artifact, and in return export variant configurations. For
example, they need to gather information about the variation points that are
contained in the artifact, need to know which variants are already defined, and then
modify existing or define new variants.
The VariabilityAI serves two purposes. First, it provides a generic description of the
variation points that are contained in an artifact. Variation points may come in two
flavors:

● Variation points may be locations in an artifact which are removed or set
inactive in a binding process. This is implemented by defining a condition for
each variation point.

● Variation points may be parameters. Such variation points provide expressions
which are used by the binding process to assign a value to the parameter.

Variation points may also exhibit dependencies; for example a set of variation points
may be designated as a set of alternatives, which means that all but one of them will
be removed during the binding process (although the actual semantics of the binding
process is beyond the scope of this concept).
Second, the VariabilityAI can define specific variant configurations. In our context, a
variant configuration is an assignment of fixed values to the conditions or expressions
that are associated with variation points.
The VariabilityAI defines a number of operations for exporting and importing
variability information, where tools may only implement selected parts of the
specification.

2.4 Software Product Line Architecture Languages

In their “Comparison of Software roduct Line Architecture Design Methods” [19]
Matinlassi describes and compares five different methods for the design of SL
architectures. Two categories of their evaluation framework are particularly
interesting in the context of this report: Language, i.e. whether a method defines “a
language or notation to represent the models, diagrams and other artifacts it
produces”, and Variability, i.e. how a method supports variability expression.
Unfortunately, they cover this aspect only very briefly, but it becomes apparent, that
the methods commonly either build on UML (QADA and KobrA) or make no
reference to any specific SLAL. For FORM it is mentioned, that it uses feature
models known from FODA [20] as its conceptual foundation.

In “ADLARS: An Architecture Description Language for Software roduct Lines” [21]
Bashroush et. al. describe an ADL for SLs with a three-level view on the product
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line: The system level, a task level and a component level. A system is modeled as a
collection of concurrently running tasks, interacting via event messages. Albeit not
explicitly stated in the paper, tasks resemble services in a micro-service architecture.
Task and components are instances of task and component templates. Templates
can refer to specified features, which can then be used in their definition of interfaces
and internal structure.

As can be inferred from its name, “LightL-ACME” [22] is based on ACME, a generic
architecture description language that provides a set of basic elements for the
description of (software) architectures. After its publication in 1997, many of the
provided concepts were incorporated in the UML standard, in particular Component,
Connector, Port and Role and mappings between ACME and UML 2.0 were
suggested in [23], [24]. In order to cater to the specific needs of product line
engineering, LightL-ACME adds the elements ProductLine, eature and Product, as
well as a mapping of architectural elements to features through a MappedTo
relationship. Arising from the close resemblance of ACME and later versions of UML,
it suggests itself to transfer the concepts from LightL-ACME to a UML based
approach to product line engineering.
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3 Abstract Test Case Generation

3.1 Machine Learning-based Test Case Generation

Machine learning techniques are mainly based on detecting useful patterns
(associations) in the data or training smart agents to solve the problems (tasks).
Supervised and unsupervised learning algorithms are the machine learning
techniques mainly involve building models and extracting useful patterns based on
training data sets, while reinforcement learning algorithms are intended to teach the
agent (learner) how to solve a problem through interaction with the environment in a
trial and error way.
Regarding the application of supervised and unsupervised learning algorithms,
various data on software testing activities, information on execution traces and
coverage can be collected at different levels of details. The main point with regard to
the application of these categories of machine algorithms is that how those collected
data are used to address the existing challenges in software testing, such as
automated test case generation. MELBA (MachinE Learning based refinement of
BlAck-box test specification) [25], [26] is a machine learning-based process which
basically uses C4.5 decision tree algorithm to generate expert-level test cases based
on the existing test cases or through the high-level system specification. The
proposed process uses an initial set of test cases which can be either the existing
test cases or generated from high-level system specification. Afterwards, the output
domain of the SUT is divided into equivalence classes and the input domain of the
program is modelled based on Category-artition (C) categories and choices. Then,
the initial set of test cases are converted to abstract test cases which are presented
in terms of output equivalence classes and input pairs of categories and choices.
C4.5 algorithm learns the association rules connecting the inputs (pairs of category
and choice) to outputs (equivalence classes). The learned rules are analyzed using
some heuristics to detect potential drawbacks in the extracted rules such as
misclassification of test cases, absence of certain categories or choices (absence of
certain input parameters). The refinement is done iteratively to lead to generation of
expert-level test cases.

RUBAR: RUle-BAsed statement Ranking [27] is a machine learning-based technique
to identify the statements containing a fault leading to a failure. In other words, it is
intended to generate test cases leading to failures. Like MELBA, it works with
generating the rules connecting the input C categories and choices to output
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equivalence classes, but particularly it uses additional information, i.e., defining some
categories in terms of relations between the parameters, to generate effective test
cases resulting in failures.
In [28] an ML-based technique, which aims at learning the program behavior through
data on execution traces of the program, is proposed. It uses a classifier, which
produces a map between the execution statistics like branch execution profiles and
the class of program behavior like “pass” or “fail”. The classifier works based on an
active learning paradigm and is trained incrementally on labelled data. The training
instances are Markov models of program behavior, then a hierarchical clustering
technique is applied to cluster the training instances based on the behavior labels. At
the last step, a final classifier is built to make a map between the generated clusters
and “pass” or “fail” behavior labels. However, this approach could be considerably
effective at determining if a new test case is a useful or redundant one, but less
effective in generating new effective test cases. This approach requires an initial test
data generator and also construction of oracle.
Another example of ML-based approaches working based on execution trace to
generate test cases or extension the set of test cases is [29]. The proposed
technique in [29] uses some invariants which are reversed-engineered specifications
from passing test cases (correct executions), to make an operational model of the
program and then examine whether the automatically generated test cases are likely
to be illegal, to produce normal operation or to reveal a fault. It presents a guided test
input generation which is a classification based on the operational model.

The aforementioned primary studies were mostly describing some applications of
numerical-based ML approaches to test case generation in software testing. In
addition to numerical-based ML approaches, automaton learning is another type of
ML technique. It is a symbolic approach conforming with eXplainable AI (XAI). All the
features in the final learnt model in automaton learning is traceable backwards to the
data values in the training set. Once the model constructed, it is subjected to model
checker to verify the behavior requirements. Automaton learning-based testing is an
ML-based black box testing. It combines machine learning with model checking and
provides automated test case generation, test case execution and oracle
construction. This approach makes a model of the SUT and refines it iteratively. An
initial model of the SUT is generated, then the automaton learning algorithm refines
the model into a more detailed one and sends the partial model to a model-checker.
It is subjected to model checking against a temporal logic requirement. Any counter
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example resulted from the model checking could be a potential test case revealing
errors [30], [31].
The role of machine learning is important since they are particularly suitable
techniques to black-box testing of complex systems such as cyber-physical systems
in industrial domains like automotive, railway, telecommunication. They can handle
large input spaces and complex behavior patterns of software systems. They can be
used with different testing techniques like model-based testing and in many different
domains of testing such as model-in-loop (MIL), software-in-loop (SIL) and hardware-
in-loop (HIL) testing.

Generally, to summarize, the application of the family of supervised learning
algorithms, it is worth noting that the supervised learning algorithms mainly aim at
finding a model on training data set (including known input and output). Then, the
extracted model could be used for prediction purposes. The supervised learning
algorithms work based on classification or regression. Classification techniques build
models on discrete data and to predict discrete output. Whereas regression
techniques are used to produce/predict continuous output. A couple of common
classification algorithms are k Nearest Neighbor (KNN), Support Vector Machine
(SVM), neural networks, naiive bayes and decision trees and some of the common
regression techniques are Gaussian process regression models, SVM regression,
regression trees and generalized linear models [32]. The classification and
regression algorithms could be used for classifying the large test data, filtering the
redundant ones and generating the effective test cases.
Unsupervised learning explores data to find hidden patterns/structures. It is can be
useful for reducing the dimensions of data. Cluster analysis techniques are the most
common algorithms in the category of unsupervised learning. A number of common
algorithms for hard and soft clustering are K-means, K-Medois, hierarchical
clustering, self-organizing maps, Fuzzy c-means and Gaussian mixture models [32].
They could be used for different purposes in handling the test data and generating
the effective test cases.

3.2 Test Case Generation from Natural Language Descriptions

This section of the document focuses on test case generation for variant-intensive
software systems using Natural-Language Requirements Description as a main
artifact.
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Most of the literature in this area is focused on test case generation from
requirements written in form of use cases. The use case diagram is an effective way
to communicate the system under development with stakeholders. To enable the use
cases to be used for expressing and analysis of product lines, extensions were made
to the existing use case approaches.
roduct Line Use Case (LUC) [33] is one such example of extended use cases
based on the use case in literature [34]. This extension explicitly focuses on
modelling the variability with the use cases using tags such as alternative, parametric
and optional. Relationships between use cases can also be modeled in LUC by
referring to them in natural language text. The use case elements are supposed to be
enclosed in curly brackets and tags in square brackets. roduct Line Use Case Test
Optimization (LUTO) [35], [36] is a test case generation approach developed to
generate test cases from the LUC specification. LUTO extends the category
partition method for test case generation. In category partition, the use cases are
parsed and analyzed for high-level functions which can be tested in isolation. The
category partition method relies on the input and choices (alternative scenarios) in
the use case description provided by the tester to generate a test suite which
exercises all the combination of the choices and input. The LUTO also acts the
same as category partition but in LUTO high-level functions are the use cases and
the choices are the variability tags embedded into LUC. The LUTO can also be
used to derive test cases for a specific variant of the product line. LUTO is also
extended for the dynamic software product lines [37]. This is achieved by a new
controlled natural language which defines the syntax for reuse, variation point,
execution steps (like loops and conditions), and control statements (such as IF). The
above controlled natural language allows the description of the dynamic software
product lines and enables the generation of concrete test cases. This approach also
uses the category partition method to derive test cases from the use cases and the
approach reduces the manual testing efforts by 40 percent.
TaRGeT [38] is an open source tool for test case generation from constrained natural
language use case specification. TaRGeT guides the end user in writing complete
use cases by using an integrated grammar checker. The complete use case
specification written in the form of use cases can then be transformed into system
models and then test cases can be generated and selected. TaRGeT allows the
selection of test cases based on coverage, specific requirements/use cases, diversity
in test cases and test purpose.
Delta modelling is an approach to model the system’s core assets and delta
separately. This modular approach helps in modelling the variabilities and
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commonalities explicitly in the software product lines. Test effort reduction
approaches based on delta modelling which can significantly reduce the test efforts
can be found in the literature. In many cases, these modelling approaches are not
used, but requirements and test description in natural language are used to capture
this information. Michael et al. [39] applied the delta-oriented testing approach on the
requirements level. The approach relies on human input for classification of
requirements for core and variable assets. The test cases linked to the core and
variable assets requirements are then classified as Invalid, New, Re-usable and Re-
test. The approach was found feasible in evaluation.
Unified Modeling Language (UML) use case diagram are also extended [40] to model
the variabilities and commonalities to support test case generation. The extension
requires contracts of the use cases to be written in the form of a proposed first-order
language. To enable the generation of tests for a specific product, the approach uses
the extended use case models to generate test objectives (high-level test
description). The test objectives are incomplete and are not executable test cases.
The approach requires implementation details in form of sequence diagrams with pre
and post conditions written in Object Constraint Language (OCL) to generate
executable test cases. The approach was applied to three products for evaluation.

3.3 Test Case Generation from Formal Notations and Restricted or Controlled
Natural Language

In the literature, there are different approaches to the generation of abstract test
cases from formal notations and controlled natural language. The different
approaches mostly differ by the degree of formalization of their input (ranging from
natural language over controlled natural language to formal notations) and the
degree of automation and tool support.
[41] and [42] propose methods to derive test cases from requirements specified as
behavior trees (not to be confused with the behavior tree concept currently being
used in the AI community) as a means of formalization for natural language
requirements. It is arguable whether the input of this approach is natural language or
formal notation. On the one hand, any requirements-based approach likely starts with
requirements formulated in natural language, which are then refined and formalized
into an appropriate input format. From this point of view, the specific input to this
approach are behavior trees.

While [41] takes the behavior tree as a given, [42] emphasizes on the process of
formalizing requirements and the integration and specification of different modelling
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artifacts along the way. The process then results in a Testing Behavior Tree. They
further suggest transforming this Testing Behavior Tree into a UML state machine,
which can then serve as input for test case generation methods such as described in
the following section on test case generation from UML models. Unfortunately, they
do not provide concrete transformation rules, but state these as a subject for future
work. An attempt at such a transformation is made in [41] by interpreting the different
aspects of Behavior Tree nodes as either states or events and thus deriving a state-
based transition system from a Requirements Behavior Tree. They then suggest
using depth-first-search in order to find test cases, which they link to the
requirements in a trace matrix in order to facilitate test case prioritization and
selection.

Another approach based on a more formalized description of the requirements, i.e.
using controlled natural language, is presented in [43]. There, the requirements are
formulated in SysReq-CNL, “a Controlled Natural Language (CNL) specially tailored
for editing unambiguous requirements of data-flow reactive systems”. They are then
transformed into an intermediary Software Cost Reduction (SCR) requirements
format, serving as an input to test case generation using T-VEC.

Advancing from (controlled) natural language towards formal notations, [44] presents
an approach based on UML state machines, the UML Testing rofile, and a formal
notation, which serves as an input format for Microsoft Spec Explorer. While the UML
aspect is discussed in the following section, the rest of this approach may be
considered independent. The notation is based on C# and consists of a set of
annotations that help to denote methods as part of the model, e.g. as rule methods.
This is being used in order to write so called model programs, representing the
behavior of the system under test. Whereas the model program expresses all legal
sequences of actions and behaviors of the system under test, an additional “Cord”
script defines constraints that are necessary for the generation of practical test cases.
The Spec Explorer tool then builds an internal state-based representation of the
model and explores it according to the provided configuration. This results in a set of
test sequences.

3.4 Test Case Generation from UML Models

The Unified Modeling Language (UML) is a general-purpose, developmental,
modelling language in the field of software engineering that is intended to provide a
standard way to visualize the design of a system. UML has gained a lot of attention
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from researchers in the field of testing and the UML Testing rofile (UT) was
developed and standardized as a testing oriented extension to UML. UML offers
different types of integrated diagrams such as use case, activity and sequence
diagrams providing different perspectives of the model. Even though each type of
UML diagram offers a view of the system, there are some limitations to each type of
diagram in generating test cases. Each type offers unique features and is useful in
certain scenarios but holds some limitation to generate test cases when they are
used in a different scenario.
Model-Based Testing (MBT) uses the design models for software testing. It provides
an efficient way of testing as it provides a methodology with a combination of source
code and system requirements for software testers to test the software. In MBT, test
cases are generated using the models. One of the major advantage of MBT is its
ability to detect errors from the early stage of development and generating test case
without being dependent on any implementation of the design.
From the literature review, we could observe that there are different methods
available to generate test cases using different UML diagrams: that are activity
diagram [45], sequence diagram [46], [47] and state chart diagram [48]–[50]. Every
research has used its own method of test case generation using different UML
diagrams. Some research studies use a single UML diagram where as other use a
combination of UML diagrams. Most of the researches have used a technique of
converting the UML diagram into an intermediate graph which is used to generate
test cases. The graph is traversed based on coverage criteria and fault model to
generate test cases. In some studies, the researchers use a combination of UML
diagrams as sequence diagram and state chart diagram are not alone sufficient to
generate test cases. Because of this limitation an integration of two UML diagrams is
required in some cases.

3.5 Test Case Generation from mplementation Models (e.g., Simulink)

Implementation-based testing is usually performed at unit level to manually or
automatically create tests that exercise different aspects of the program structure. To
support developers in testing code, implementation-based test generation has been
explored in a considerable amount of work [51] in the last couple of years from code
coverage criteria to mutation testing.

Numerous techniques for automatic test generation based on code coverage criteria
[52]–[56] have been proposed in the last decade. An example of such an approach is
EvoSuite [52], a tool based on genetic algorithms for automatic test generation of
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Java programs. Another automatic test generation tool is KLEE [53] which is based
on dynamic symbolic execution and uses constraint solving optimization as well as
search heuristics to obtain high code coverage. CompleteTest [57], a tool developed
for IEC 61131-3 implementation models, is an example of a whitebox tool focusing on
embedded software for generating timed sequences of inputs.

Another very popular implementation model is Simulink that has gained a lot of
attention. Matinnejad et al. proposed an approach for generating test cases for
Simulink models [58]. Ben Abdesalem et al., focused on the automated generation of
test cases based on multi-objective search algorithms combined with artificial
intelligence techniques for autonomous vehicles [59]. Other approaches use mutation
testing, where the idea lies on generating faulty versions of the system and
measuring the number of faults detected by the test suite [60]–[63]. Nevertheless,
these approaches focused solely on generating test inputs for testing CSs at a
single test level (MiL or SiL), and require significant manual effort to concretise test
cases for their execution in further test levels (e.g., HiL). Furthermore, the lack of test
oracles makes the evaluation after the test cases are executed mostly manual, which
is a non-systematic and error-prone process.

Simulink has, Model in the Loop (MIL), Software in the Loop (SIL), rocessor in the
Loop (IL) and Hardware in the Loop (HIL) support with one test case (with back to
back support) [64], [65]. Using code coverage settings, automatic test cases can be
generated [66]. Using simulink test assessment blocks, test oracles are created and
can verify the model performs as expected [67].

3.6 Test Case Generation from Tables and Data Models

Combination test generation techniques are test generation methods where tests are
created by combining the input data values of the software based on a certain
combinatorial strategy. Combinatorial testing can be helpful in the creation of test
cases by generating certain combinations among parameter values. Several
techniques have been proposed for combinatorial testing [68]–[72] in order to
generate a test suite which covers the combinations of t parameter values at least
once or in a certain interaction strategy (e.g., each-used, pairwise, t-wise, base
choice). One of the most used combinatorial criteria is pairwise or 2-wise.

Recently, researchers have shown an increased interest in combinatorial software
testing. There are a number of studies in which combinatorial testing tools and
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techniques are being evaluated (e.g., [73]–[75]) in their use of combinatorial
modelling and testing of industrial systems. Borazjany et al. [73] performed a case
study in which they applied combinatorial testing on an industrial system by using
ACTS to generate tests. The purpose of their study was to apply combinatorial
testing to a real-world system and evaluate its effectiveness, as well as gaining
experience and insight in the practical application of combinatorial testing, including
the input modelling process. The tests are generated for testing both the functionality
and the system robustness. Another study conducted at Lockheed Martin [75] reports
about an introduction of combinatorial testing in a large organization. The applicability
of combinatorial testing was evaluated by comparing different features contained in a
set of combinatorial test tools and then applying these tools to real world systems. A
number of pilot projects were conducted where ACTS was used as the primary tool.
According to the results of this study, ACTS continued to be used by a number of
teams once the pilot projects ended. Lei et al. [73] conducted a study to generalize
the pairwise IO strategy to t-way testing, and implemented this new strategy in
FireEye. The tool was evaluated in terms of efficiency by using different system
configurations. The experiments showed that the number of tests increased rapidly
with the t-strength. FireEye and four other test generation tools were applied to a
Traffic Collision Avoidance System (TCAS) module. The results show that FireEye
performed considerably better in both size of test suites and generation time for
higher strength t-way testing. Another approach used for embedded systems is
timed-base choice criterion by Bergstrom et al. [76], in which timing information is
incorporated in the input space used for test generation.

3.7 Mutation Testing for Variant-intensive Systems

Testing a software product line may be very tricky since the product line can be used
to derive a combination of products. The products can grow significantly and testing
all possible combination might not be feasible. Mutation testing is used to improve the
test suite or evaluate existing test suite. The mutation testing approaches are based
on mutation operators, meaning that they rely on injecting potential bugs (mutation
operators) into the software (modified versions are called mutants) and see if the test
suite detects them. If a test is failed to execute on a modified (potentially buggy)
version of the software, the mutant is considered as “killed”. If the mutant is not killed,
then either the test suite needs to be improved or the mutant is equivalent to the
original software. Mutation testing is generally applied at the code-level but evidence
of applying mutation testing at model-level can also be found in the literature. This
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section of the document focuses on the use of mutation testing for software product
lines.
Christopher et al. [77] applied the mutation testing on the feature model-level to
assess the quality of test suites. articularly, Christopher et al. proposed two
mutation operators for feature models to evaluate if diverse test cases kill more
mutants. This work uses the formula representation of the feature model and
proposes two mutation operators, one operator replaces a literal in a clause and the
other operator replace a clause with two newly generated clauses. roducts are then
derived from the original feature model, using SAT solvers. The derived products are
then checked with the formulas of the mutants to calculate the mutation score.
Diverse test cases were found to be more effective in killing the generated mutants.
Variability can be realized in different ways. One way to handle variability in C++
software systems is using the preprocessor constructs (such as #if def and #if
defined etc.).
Mustafa et al. [78] proposed mutation operators for preprocessors-based variable
systems. A proposed taxonomy is used to derive the mutation operators, which
includes variability model faults (faults in features and their dependencies), variability
mapping faults (faults in the mapping of code to the configuration) and domain
artifact faults (faults in the code of feature interaction). The operators remove a
random feature from the feature model, modify a feature dependency, add an
additional condition to the feature, conditionally use traditional mutation operators,
remove ifdef blocks, and move the code around an ifdef block. The authors
then discussed how their mutation operators represent the real faults in the domain of
variant-intensive software systems.
Dennis et al. [79] also proposed a variety of mutation operators on feature model
level. Their mutation operators include creating a feature, moving features, setting
the feature as optional, creating feature groups, moving feature groups and many
others. These simple mutation operators reflect the small syntactic errors. The
authors also addressed the problem of mutant selection using both random and
similarity-based strategies. For similarity, the authors considered equality as a
measure and considered the definition of it in the future. Tool support for the mutation
sampling was provided and the approach was evaluated for applicability,
effectiveness, and efficiency.
To deal with the huge number of combinations and to enable the use of model
checkers for product lines, the Feature Transition Systems (FTS) was proposed [80].
Xavier et al. [81] based their work on the FTS and feature models to present a vision
for efficient mutation testing. The mutation is supposed to be described in feature
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diagrams and it can be replicated in the behavioral FTSs. After that, configurators
can help in deriving the mutated version of concrete products and test cases can be
executed on all mutants at the same time. Thus, the approach may speed the
process of mutation analysis in the software product lines.
Mutation Testing is also used for the reduction of testing efforts in terms of test
configurations. An approach [82] in the literature uses mutated feature models to
evaluate test configurations being generated by an evolutionary algorithm. The
evolutionary algorithm (1+1 evolutionary) is guided by a maximization fitness function
for the mutation score. The proposed search-based approach for the generation of
test configuration was evaluated for effectiveness (in terms of mutation score) and
the number of test configuration generated were also compared to random strategy.
On average, the search-based test configuration generation approach improved the
mutation score by 68%.
Feature mapping models are used to model the features on system design (UML
models). Mutation operators targeting the mapping models and UML models are also
proposed in the literature [83]. The operators include deleting a mapping, deleting
target elements of the mapping, inserting an extra element to the target of the
mapping and flipping the features of the mapping. The operators for UML models
focused on the transition of UML state machines. The mutation operators were
applied to three software product lines case studies. Their test suites were analyzed
against each mutation operator. The authors concluded that transition coverage
should not be used as a criterion for test case selection in product lines because it
might result in a low mutation kill rate.
It might be really hard to find a benchmark for evaluation of a testing strategy for a
software product line. Work on generating a benchmark with potential bugs is
reported in the literature [84]. The work uses the code of products and generates
benchmark test cases using EvoSuite [85]. The products are then mutated using
random and direct mutation, and test cases are executed to find the mutation score.
This approach can be very useful when evaluating new testing strategies.

Mutation testing has been used also for embedded software by Enoiu et al. [86]. This
technique is used for producing test cases using an automated test generation
approach that operates using mutation testing for software written in IEC 61131-3
language, a programming standard for safety-critical embedded software, commonly
used for rogrammable Logic Controllers (LCs). This approach uses the UAAL
model checker and is based on a combined model that contains all the mutants and
the original program.
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4 Combined Approaches

In [87], [88] the model-based software product line testing (MoSo-oLiTe) concept is
introduced, providing a method for combinatorial SL testing and its implementation
by a tool chain.
State charts are used as a test model for the SL, whose states and transitions are
then mapped to features of a feature model. This model is flattened and transformed
into a constraint satisfaction problem, and a greedy ad-hoc algorithm, the AETG
(Automatic Efficient Test Case Generator System, see [89]) is applied in order to
generate a set of test cases fulfilling the desired combinatorial coverage criteria.

The following problems of testing SL are identified in [90], and approached with an
algorithm defined in [91]: The time provided for software tests is inflexible, test cases
have to be provided and executed in a restricted time frame. The testing of invalid
software configurations of an SL naturally leads to errors. Hence, a form of
constraint management is necessary. Also, test sets often lack in measurable test
coverage criteria if they are provided manually and chosen from experience.
The authors provide methods to identify the variation points of a SL and construct a
variability feature model. Subsequently, they present an algorithm to automatically
generate a – with regards to a given amount of time - minimal set of configurations
covering all pairwise interactions between the features and satisfying all constraints.
For this purpose, the feature model is converted into a constraint model: A matrix
with columns representing the features and rows representing possible
configurations, where the number of rows is dynamic. Three types of constraints can
be modelled: Inheritance links that represent hierarchical relations between features
(opt, and, or, xor), cross-tree links (mutex, requires) and the constraints that enforce
a certain level of coverage (e.g. pairwise coverage). A constrained anytime
minimization algorithm is applied. The result is a so-called mixed level covering array
that represents test cases sufficient for the desired level of coverage, of minimal size
with respect to the assigned generating time.
The approach was tested on a case study of a video conferencing SL. Timewise,
the combination of constructing the feature model and performing the algorithm
generated test sets 7 times faster than the manual approach. Those test sets were
17% smaller and did not contain any invalid test cases. They provided full pairwise
coverage, compared with around 19% pairwise coverage of the manual approach.

Both approaches presented above have the disadvantage that the notion of
variability is very narrow: It is basically synonymous with configurability. Furthermore,
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they can only be applied if the variability is fixed from the beginning. The case that
variants are added one after another is not covered, although it is a relevant scenario
in industry.

Delta modelling [92] takes the model of a core product as a base and models variants
of it by expressing the addition, removal and modification of features by deltas. Here,
in principle, multiple deltas can implement a feature, and, vice versa, one delta can
be used to implement multiple features. So, instead of having to deal with a full model
for each variant, the latter can be represented by a (much smaller) set of deltas.
[93] investigate the prioritization of variants for delta models. As a measure of
distance of two variants they choose the Hamming distance, i.e., up to scaling, the
number of deltas resp. features in which the two variants differ. As a first product to
test, the core product (preferably the largest/most error prone product) is chosen.
Further variants to test are selected by computing the minimum distance to the set of
already tested products for all possible not-yet-tested candidates. The candidate with
the largest minimum distance is then chosen as the next test object.
The error-finding capabilities are measured against a random approach and the
MoSo- oLiTe algorithm, both of which they outperform.
This approach also has limitations. Using the Hamming distance does not lead to
optimal feature coverage properties, as removed features are weighted as much as
additional features. Nonetheless, in [94], it is mentioned that the absence of features
can also trigger errors.
Also, measuring the distance between a variant and a set of variants by taking the
minimal distance to any element of the set does not lead to optimal feature coverage.
A variant might have a relatively large distance to all elements of the set, yet, it might
not contain any features that are not in the set yet.
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5 Tools

Following the line of discussion from the previous two chapters, we describe two
types of tools: First, we review tools with the main focus on variant modelling and
management. Then, we review available tools for the generation of abstract test
cases from different types of models.

5.1 Variability Modelling Tools

5.1.1pure::variants

ure::variants by pure.systems is a major product for variant management. It allows
to generate feature models, define instantiations, and link the features to many
different types of artefacts in the development process, including requirements,
software modules, and test cases. It contains connectors to DOORS, Rational
Rhapsody, Enterprise Architect, Magic Draw, Simulink, and other software
engineering tools. A free community edition, which is limited in the size of the models,
is available.

5.1.2BigLever Gears
Gears by BigLever Inc. is one of the main competitors of pure::variants and has a
large overlap in functionality. The main features of Gears are:

 Feature models and product feature profiles: The modelling language used by
Gears differs in large parts from the one used by pure::variants and models are
not interchangeable. For any product in the portfolio a profile is created, which
unambiguously identifies the product by its features according to the feature
model.

 Configuration and variance points: In Gears, variance points are „intelligent
casings for product variability”. Gears provides a language to describe variance
points such that they can be configured according to a product profile. A product
configurator allows to assemble the required components such as software
modules, requirements and tests, for the individual products of the SL.

 Self-contained IDE: In contrast to pure::variants, Gears offers a “console” for the
portfolio-specific development aspects. This ensures a wide degree of
independence from external influences. Similar to pure::systems there are
connectors to established software development environments. In particular, there
is a tight integration between Gears and Rhapsody for model-based development.
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Additionally, there is a “bridge” to DOORS, Rational Quality Manager and Clear
Case.

5.1.3Eclipse FeatureDE, Eclipse EMF Feature Model/Feature Diagram Editor
The FeatureIDE project [https://featureide.github.io] aims to provide a complete
Software roduct Line Engineering solution, implemented as a collection of Eclipse
plugins. The toolchain covers the whole engineering lifecycle, from domain and
requirements analysis all the way to feature implementation, product generation and
testing.
The code base is licensed under L-GL 3, and as of 2019 still sees active
development — the latest version 3.6 was released August 30. Software packages
can be installed on an existing Eclipse environment or downloaded alongside the
base IDE as a self-contained application. Online documentation is sparse, but the
Mastering Software Variability with eatureIDE book (written for version 3.3) seems
to be a satisfactory guide.
FeatureIDE supports variability modelling through Feature Models, and deltas at
programming level, but automated test generation does not seem to be included yet
— though automated configuration generation and integration to JUnit are touted as
features. The toolchain is also extensible, with a number of external projects having
been built on top of it. All factors considered, FeatureIDE seems at first glance a
comprehensive SLE solution, and merits closer examination as a possible basis for
implementing a test generation tool for variant systems.

5.1.4Other approaches

Wikipedia [https://en.wikipedia.org/wiki/Feature_model] lists 27 tools supporting the
editing and/or analysis of feature models (including the ones mentioned above).
Many of these tools are outdated, no longer supported, or not well-integrated into
modern development processes.

5.2 Model-based Testing Tools

5.2.1Expleo Modica
MODICA is a test generation tool that employs a usage model as a source. A usage
model describes a system from the perspective of its usage, with states as its nodes
and state transitions as its edges. To this model, the test case generation algorithm
can be applied that aims to comply with specified coverage criteria, using the
smallest possible number of test steps in the test cases. Coverage criteria can be
given by requirements, the request that (certain) states, state transitions or paths are
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covered, or the choice of special test sequences that are otherwise hard to reach. In
MODICA, there is also a variant handling available that allows to specify test
generation strategies for different variants of the usage model. See [95] for details.

5.2.2Expleo Testona
TESTONA is a test case generation tool based on the classification tree method [96].
The classification tree of a test object, e.g. a product, specifies its functionality by
dividing it into its aspects/parameters (classifications) and their
specifications/parameter values (classes). Furthermore, constraints on the
combination of these classes can be expressed in dependency rules.
ossible test cases are then admissible combinations of classes from different
classifications. For the generation of a suite of test cases, there are different modes
available that represent different levels of test coverage: In minimal combination,
every class appears in at least one test case, in pairwise and threewise combination,
the same holds for every pair and triple of classes, respectively. In maximal
combination, all possible test cases are generated.
In addition, it is possible to weight the classes depending on their frequency or error
risk and consequently obtain a prioritization of test cases. A variability management
is built in, allowing the user to specify variants from the generic model and apply
TESTONA-applications specifically to them. See [97] for details.

5.2.3Expleo Meran
MERAN is an integration tool for requirement management that also supports variant
management. It allows the creation of generic entities of requirements or test
specifiations, in a way that their properties are fragmented in small units. Once a
specific variant is chosen, the requirements or test specifications can be adapted by
choice of parameters or text segments. See [98] for details.

5.2.4 fak MBT Creator
The MBTCreator is a tool suite that combines various functionalities for model-based
testing and test prioritization. MBTCreator offers editors and a graphical user
interface for a toolchain that covers all steps from requirements to test case
generation, prioritization and execution.
In a first step, the tool features methods for formalization of requirements using a
notation language, the IRDL (Ifak Requirement Description Language). A state
machine can then be generated from formalized requirements, which models all
behavior of the SUT as described in the requirements. Abstract test cases are then
generated for the state machine using one of several coverage based test goals.
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Additionally, MBTCreator features a test prioritization method which prioritizes test
cases via a combination of model-based cluster analysis and a requirements-based
evaluation procedure to enable optimization of the test execution process.
To execute the abstract test cases, a test manager has recently been included into
MBTCreator. It evaluates the abstract test cases and derives a suitable test program.
To run the test cases for the SUT, a test adapter has been developed, which enables
communication between the MBT Creator and the SUT. Currently, communication via
OC UA and Shared Memory is supported.

5.2.5SaFRel: ML-based performance (stress) test case generation (RSE)
SaFReL is a self-adaptive fuzzy reinforcement learning-based performance (stress)
testing framework which makes the tester agent able to learn the optimal policy for
generating stress test conditions without having a performance model of the system.
Finding the performance breaking point of the software under test (SUT), at which the
system functionality breaks, or the performance requirements are not satisfied
anymore, is the main objective of the stress testing in this framework. In stress
testing, providing extreme (stress) test conditions involves changing (manipulating)
the platform- and workload-wise factors affecting the performance. The current
prototype mainly focuses on stress testing regarding manipulating the resource
availability.
It assumes two learning phases, i.e., initial and transfer learning. First, it learns the
optimal policy through the initial learning and then reuses the learnt policy for
observed software systems with performance sensitivity analogous to already
observed ones while still keeping the learning running in the long-term. The current
prototype uses a performance prediction module to estimate the effects of the applied
actions. It gets the initial resource utilization and nominal response time of the
system, which have been measured in an isolated, contention free execution
environment, and the performance sensitivity indicators as inputs. This framework
could be executed on a virtual machine containing the SUT, and it would be
augmented by an actuator doing the resource scaling within the VM. In this case, it
will be able to use the (resource) monitoring tools (services) like ercepio
Tracealyzer to receive the status data.

5.2.6 ntegrationDistiller: Automating generation of ntegration Test Cases
(RSE)

IntegrationDistiller is a solution and tool for automatic generation of integration level
test cases for object-oriented .NET applications. It has a static analysis engine,
implemented using Roslyn .NET compiler platforms AIs, which can automatically
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parse the source code and based on the concept of coupling-based testing, identifies
different coupling relationships that can exist between classes, methods and their
parameters, and generate test paths to cover different interaction scenarios. More
details can be found in http://www.es.mdh.se/pdf_publications/5282.pdf.

5.2.7Other
There is a number of tools which have been developed, but are either out of date, no
longer maintained, or otherwise unavailable. We mention them mostly for
completeness, since some of the underlying ideas are (still) relevant for XIVT:

● Imbus Variant Test, https://www.imbus.ca/testbench/variant-test/
● IT ower Contino rova, https://itpower.de/de/produkt/continoprova/
● T-VEC, http://www.t-vec.com/
● vEXgine, http://caosd.lcc.uma.es/vexgine/
● Fokus!MBT
● Behavior Engineering Support Environment
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