
A Primer on Big Data Testing

For more information please contact

Lidia Le François

416-238-5333 ext 254

llefrancois@qaconsultants.com

www.qaconsultants.com

TABLE OF CONTENTS

1. Big Data and Bad Data 3
2. Characteristics of Big Data 4

2.1 Volume: The quantity of data 4
2.2 Velocity: Streaming data 4
2.3 Variety: Different types of data 4

3. Testing Big Data Systems 6
4. Testing Methods, Tools and Reporting for Validation of Pre-Hadoop Processing 7

4.1 Tools for validating pre-Hadoop processing 9
5. Testing Methods, Tools and Reporting for Hadoop MapReduce Processes 10

5.1 Methods and tools 11
6. Testing Methods, Tools and Reporting for Data Extract and EDW Loading 12

6.1 Methods 13
6.2 Different methods for ETL testing 13
6.3 Areas of ETL testing 13
6.4 Tools 13

7. Testing Methods, Tools and Reporting on Analytics 14
7.1 Four Big Data reporting strategies 14
7.2 Methodology for report testing 15
7.3 Apache Falcon 17

8. Testing Methods, Tools and Reporting on Performance and Failover Testing 18
8.1 Performance testing 18
8.2 Failover testing 18
8.3 Methods and tools 19
8.3.1 Jepsen 19

9. Infrastructure Setup, Design and Implementation 20
9.1 Hardware selection for master nodes (NameNode, JobTracker, HBase Master) 20
9.2 Hardware selection for slave nodes (DataNodes, TaskTrackers, RegionServers) 21
9.3 Infrastructure setup key points 22

Conclusion 23

PREFACE

This report is the output of a research project by QA Consultants - the North American leader in
onshore software testing. This paper focuses on the primary challenges of testing Big Data
systems and proposes methodology to overcome those challenges. Because of the complex
nature of both Big Data and the highly distributed, asynchronous systems that process it, organi-
zations have been struggling to define testing strategies and to set up optimal testing environ-
ments. The focus of this primer is on important aspects of methods, tools and processes for Big
Data testing. It was completed with the support of the National Research Council of Canada.

A Primer on Big Data Testing

©QA Consultants 2015

Big Data and Bad Data
“70% of enterprises have either deployed or are planning to deploy big

data projects and programs this year.”

Analyst firm IDG

“75% of businesses are wasting 14% of revenue due to poor data quality.”

Experian Data Quality Global Research report

“Big Data is growing at a rapid pace and with Big Data comes bad data.

Many companies are using Business Intelligence to make strategic deci-

sions in the hope of gaining a competitive advantage in a tough busi-

ness landscape. But bad data will cause them to make decisions that

will cost their firms millions of dollars.

According to analyst firm Gartner, the average organization loses $8.2

million annually through poor Data Quality, with 22% estimating their

annual losses resulting from bad data at $20 million and 4% putting

that figure as high as an astounding $100 million. Yet according to the

Experian Data Quality report, 99% of organizations have a data quality

strategy in place. This is disturbing in that these Data Quality prac-

tices are not finding the bad data that exists in their Big Data.”

Query Surge

With respect to software development and verification processes, testing teams may not yet fully understand
the implications of Big Data's impact on the design, configuration and operation of systems and databases.
Testers need a clear plan to execute their tests but there are many new unknowns as Big Data systems are
layered on top of enterprise systems struggling with data quality. Added to those struggles are the challeng-
es of replicating and porting that information into the Big Data analytic and predictive software suite. How do
you measure the quality of data, particularly when it is unstructured or generated through statistical process-
es? How do you confirm that highly concurrent systems do not have deadlock or race conditions? What tools
should be used?

It is imperative that software testers understand that Big Data is about far more than simply data volume. For
example, having a two-petabyte Oracle database doesn't necessarily constitute a true Big Data situation -
just a high load one. Big Data management involves fundamentally different methods for storing and
processing data, and the outputs may also be of a quite different nature. With the increased likelihood that
Bad Data is imbedded in the mix, the challenges facing the quality assurance testing departments increase
dramatically. This primer on Big Data testing provides guidelines and methodologies on how to approach
these data quality problems.

3©QA Consultants 2015

A Primer on Big Data Testing

1

4 ©QA Consultants 2015

A Primer on Big Data Testing

Characteristics of Big Data

2.1 Volume: The quantity of data

With the rise of the Web, then mobile computing, the volume of data generated daily around the world has exploded. For
example, organizations such as Facebook generate terabytes of data daily that must be stored and managed.

As the number of communications and sensing devices being deployed annually accelerates to create the encompass-
ing “Internet of Things,” the volumes of data continue to rise exponentially. By recording the raw, detailed data streaming
from these devices, organizations are beginning to develop high-resolution models based on all available data rather
than just a sample. Important details that would otherwise have been washed out by the sampling process can now be
identified and exploited. The bottleneck in modern systems is increasingly the limited speed at which data can be read
from a disk drive. Sequential processing simply takes too long when such data volumes are involved. New database
technologies that are resistant to failure and enable massive parallelism are a necessity.

2

VOLUME VELOCITY VARIETY

Big Data is often characterized as involving the so-called
“three Vs”: Volume, Velocity and Variety.

(Some authors also add a fourth characteristic: Veracity.)

The Dawn of Big Data: the uncertainty of new
information is growing alongside its complexity

Chart courtesy of International Business Machines - Slide Share

Vo
lu

m
e

in
 E

xa
by

te
s

Sensors
& Devices

Social
Media

VoIP

Enterprise
Data

2.2 Velocity: Streaming data

It is estimated that 2.3 trillion gigabytes of data
are created each day. In our highly connected
world, trends of interest may last only a few
days, hours or even just minutes. Some
important events, such as online fraud or
hacking attempts, may last only seconds, and
need to be responded to immediately. The
need for near-real time sensing, processing
and response is driving the development of
new technologies for identifying patterns in
data within very small and immediate time
windows.

2.3 Variety: Different types of data

A common theme in Big Data systems is that the source data is increasingly diverse, involving types of data and struc-
tures that are more complex and/or less structured than the traditional strings of text and numbers that are the mainstay
of relational databases. Increasingly, organizations must be able to deal with text from social networks, image data, voice
recordings, video, spreadsheet data, and raw feeds directly from sensor sources.

2010

9000

8000

7000

6000

5000

4000

3000

2020

We are here

Even on the Web, where computer-to-computer communication ought to be straightforward, the reality is
that data is messy. Different browsers send differently formatted data, users withhold information, and
they may be using different software versions or vendors to communicate with you. Traditional relational
database management systems are well-suited for storing transactional data but do not perform well with
mixed data types.

In response to the “three Vs” challenge, Hadoop, an open source software framework, has been deve-
loped by a number of contributors. Hadoop is designed to capture raw data using a cluster of relatively
inexpensive, general-purpose servers. Hadoop achieves reliability that equals or betters specialized
storage equipment by managing redundant copies of each file, intentionally and carefully distributed
across the cluster.

5©QA Consultants 2015

A Primer on Big Data Testing

2

Hadoop uses its own distributed file system,
HDFS, which extends the native file system of
the host operating system, typically Linux or
Windows.

A common Hadoop usage pattern involves
three stages:
1. Loading data into HDFS
2. MapReduce operations
3. Retrieving results from HDFS

This process is by nature a batch operation,
suited to analytical or non-interactive computing
tasks. For this reason, Hadoop is not itself a full
general-purpose database or data warehouse
solution, but can act as an analytical adjunct to or
the basis of one when supplemented with other
tools.

One of the best-known Hadoop users is Face-
book, whose model follows this pattern. A
MySQL database stores the core data, which is
then reflected into Hadoop, where computations
occur, such as creating recommendations for you
based on your friends’ interests. Facebook then
transfers the results back into MySQL for use in
pages served to users.

Hadoop is not actually a single product but is
instead a growing collection of components and
related projects. Following are a few of the many
components that would need to be tested for
correct installation, configuration and functioning
in a typical Hadoop environment.

1. Hadoop HDFS: the file system
2. Hadoop YARN: the Hadoop resource coordi-

nator
3. Apache Pig: a query system
4. Apache Hive: a system that allows data

stored in Hadoop to be structured as tables
and queried using SQL

5. Apache HCatalog: the Hadoop metadata
store

6. Apache Zookeeper: a coordination system
7. Apache Oozie: a process scheduling and

sequencing system
8. Apache Sqoop: a tool for connecting Hadoop

to relational databases
9. Hue: a browser-based user interface for

several of the tools above

6 ©QA Consultants 2015

A Primer on Big Data Testing

Big Data Testing Aspects3
Some of the key aspects of Big Data testing are the following.

Poor implementation of the above key compo-
nents of testing Big Data environments can lead to
poor quality, delays in testing, and increased cost.
Defining the test approach for process and data
validation early in the implementation life cycle
ensures that defects are identified as soon as
possible, reducing the overall cost and time to
implementation of the finished system. Performing
functional testing can identify data quality issues
that originate in errors with coding or node config-
uration; effective test data and test environment
management ensures that data from a variety of
sources is of sufficient quality for accurate analy-
sis and can be processed without error.

Apart from functional testing, non-functional
testing (specifically performance and failover
testing) plays a key role in ensuring the scalability
of the process. Functional testing is performed to
identify functional coding issues and requirements
issues, while non-functional testing identifies
performance bottlenecks and validates the
non-functional requirements. The size of Big Data
applications often makes it difficult or too costly to
replicate the entire system in a test environment; a
smaller environment must be created instead, but this
introduces the risk that applications that run well in the
smaller test environment behave differently in produc-
tion.

The numerical stability of algorithms also becomes an
issue when dealing with statistical or machine learning
algorithms. Applications that run well with one dataset
may abort unexpectedly or produce poor results when
presented with a similar but poorly conditioned set of
inputs. Verification of numerical stability is particularly
important for customer-facing systems.

Two key areas of the testing problem are (1) establish-
ing efficient test datasets and (2) availability of
Hadoop-centric testing tools (such PigUnit, Junit for
Pig, Hive UDF testing, and BeeTest for Hive).

A Primer on Big Data Testing

7©QA Consultants 2015

3

4 Testing Methods, Tools and Reporting for Validation
of Pre-Hadoop Processing

Testing should include all four phases shown below.
Data quality issues can manifest themselves at any of
these stages.

Therefore, it is necessary that the system engineers are
careful when building the test environment, as many of
these concerns can be mitigated by carefully designing
the system architecture. A proper systems architecture
can help eliminate performance issues (such as an
imbalance in input splits or redundant shuffle and sort),
but, of course, this approach alone doesn't guarantee a
system that performs well.

Even with a smaller test environment, the data volumes
may still be huge, requiring hours to run a single test.
Careful planning is required to exercise all paths with
smaller data sets in a manner that fully verifies the
application but allows the test to run in a short enough
period of time to allow repeated feasible testing.

Big Data systems typically process a mix of both struc-
tured data (such as point-of-sale transactions, call
detail records, general ledger transactions, and call
center transactions), unstructured data (such as user
comments, doctors' notes, insurance claims descrip-
tions and web logs) and semi-structured social media
data (from sites like Twitter, Facebook, LinkedIn and
Pinterest). Often the data is extracted from its source
location and saved in its raw or a processed form in
Hadoop or another Big Data database management
system. Data is typically extracted from a variety of
source systems and in varying file formats, e.g.
relational tables, fixed size records, flat files with
delimiters (CSV), XML files, JSON and text files.

Most Big Data database management systems are
designed to store data in its rawest form, creating what
has come to be known as a "data lake," a largely
undifferentiated collection of data as captured from the
source. These DBMSs use an approach called
"schema on read," i.e. the data is given a simple
structure appropriate to the application as it is read, but
very little structure is imposed during the loading phase.

The most important activity during data loading is to
compare data to ensure extraction has happened
correctly and to confirm that the data loaded into the
HDFS (Hadoop Distributed File System) is a
complete, accurate copy.

8 ©QA Consultants 2015

A Primer on Big Data Testing

4
Data sources can include a local file system, HDFS,
Hive tables, streaming sources, and relational or other
databases. If the data is loaded into Hive, it can be
validated and transformed using HiveQL, as one can
do in SQL. If not, a MapReduce or equivalent process
(e.g. Spark) will be needed.

Typical tests include:
1. Data type validation. Data type validation is

customarily carried out on one or more simple
data fields. The simplest kind of data type valida-
tion verifies that the individual characters provid-
ed through user input are consistent with the
expected characters of one or more known
primitive data types as defined in a programming
language or data storage and retrieval mecha-
nism.

2. Range and constraint validation. Simple range
and constraint validation may examine user input
for consistency with a minimum/maximum range,
or consistency with a test for evaluating a
sequence of characters, such as one or more
tests against regular expressions.

3. Code and cross-reference validation. Code
and cross-reference validation includes tests for
data type validation, combined with one or more
operations to verify that the user-supplied data is
consistent with one or more external rules,
requirements or validity constraints relevant to a
particular organization, context or set of underly-
ing assumptions. These additional validity
constraints may involve cross-referencing
supplied data with a known look-up table or direc-
tory information service such as LDAP.

4. Structured validation. Structured validation
allows for the combination of any number of
various basic data type validation steps, along
with more complex processing. Such complex
processing may include the testing of conditional
constraints for an entire complex data object or
set of process operations within a system.

HDFS can support up to 200 PB of storage and a
single cluster of 4,500 servers, with close to a billion
files and blocks. When HDFS ingests data, it splits the
file into smaller pieces and distributes them across
different nodes in a cluster.

This splitting is key to Hadoop's ability to perform
resilient parallel processing. For those transformations
that can be parallelized, Hadoop will use the all the
processors across the cluster to perform the computa-
tion as quickly as possible.

One node of the cluster is reserved to serve as the
NameNode, which knows the identifiers (names) of
each of the other nodes in the cluster. The client (the
device initiating a data load or other computation) asks
the NameNode for the list of DataNodes, the servers
where the data resides. When a client writes data, it
first asks the NameNode to choose DataNodes to host
replicas of the first block of the file. The client organiz-
es a direct pipeline from the source server and sends
the data. When the first block is filled, the client
requests a DataNode to be chosen for the next block,
most likely a different one than received the first block.
A new pipeline is organized, and the client sends the
next block of data from the file.

1. Checkpoint Node
The Checkpoint Node periodically combines the
existing checkpoint and journal to create a new check-
point and an empty journal. The Checkpoint Node
usually runs on a different host from the NameNode
since it has the same memory requirements as the
NameNode. It downloads the current checkpoint and
journal files from the NameNode, merges them locally,
and returns the new checkpoint back to the NameNode.

Creating periodic checkpoints is one way to protect the
file system metadata. The system can start from the
most recent checkpoint if all other persistent copies of
the namespace image or journal are unavailable.
Creating a checkpoint also lets the NameNode
truncate the journal when the new checkpoint is
uploaded to the NameNode. HDFS clusters run for
prolonged periods of time without restarts during which
the journal constantly grows. If the journal grows very
large, the probability of loss or corruption of the journal
file increases. Also, a very large journal extends the
time required to restart the NameNode. For a large
cluster, it takes an hour to process a week-long journal.
Good practice is to create a daily checkpoint.

2. Backup Node
The Backup Node can be viewed as a read-only
NameNode. It contains all file system metadata
information except for block locations. It can perform all
operations of the regular NameNode that do not involve
modification of the namespace or knowledge of block
locations. Use of a Backup Node provides the option of
running the NameNode without persistent storage,
delegating responsibility of persisting the namespace
state to the Backup Node.

3. Upgrades and File System Snapshots
The snapshot (only one can exist) is created at the
cluster administrator's discretion whenever the system
is started. If a snapshot is requested, the NameNode
first reads the checkpoint and journal files and merges
them in memory.

1. Apache Flume
Apache Flume is a reliable service for efficiently trans-
ferring large quantities of data into HDFS. Enterprises
typically use Flume to ingest log files from application
servers or other systems, often to archive them in
compliance with prevailing regulations.

An important consideration when designing a Flume
flow is the type of channel to use. There are two types:
file channel and memory channel.

Then it writes the new checkpoint and the empty
journal to a new location, so that the old checkpoint
and journal remain unchanged.

During handshake the NameNode tells DataNodes
whether to create a local snapshot. The local snapshot
on the DataNode cannot be created by replicating the
directories containing the data files as this would
require doubling the storage capacity of every DataN-
ode on the cluster. Instead, each DataNode creates a
copy of the storage directory and hard links existing
block files into it. When the DataNode removes a
block, it removes only the hard link, and block modifi-
cations during appends use the copy-on-write
technique. Thus old block replicas remain untouched
in their old directories.

The file channel stores all events on disk so if the OS
crashes or reboots, events that were not successfully
transferred to the next node will not be lost. The
memory channel buffers events in memory, so it is
faster but less reliable should a failure occur.

A Primer on Big Data Testing

9©QA Consultants 2015

4

4.1 Tools for validating pre-Hadoop processing

The following tools are components of the Hadoop ecosystem and can be used to assist with validating
pre-Hadoop processing.

Chart courtesy Cloudera.com

input HDFS

output HDFS

HDFS
replication

HDFS
replication

10 ©QA Consultants 2015

A Primer on Big Data Testing

2. Apache Sqoop
Apache Sqoop is a tool for transferring data between
Hadoop and relational databases. For example, you
can use Sqoop to import data from a MySQL or Oracle
database into HDFS.

3. Hive
Hive is a tool that structures data in Hadoop into the
form of relational-like tables and allows queries using
a subset of SQL. Hive is a good tool for performing
queries on large datasets, especially datasets that
require full table scans. Hive can be used to support a
tester who is interested in doing arbitrary queries to
confirm values of calculated statistics or to run reason-
ableness tests across large swaths of data.

4. Pig
Apache Pig provides an alternative language to SQL,
called Pig Latin, for querying data stored in HDFS. Pig
does not require the data to be structured as tables,
however, and can be more efficient than SQL if the
queries involved require reuse of intermediate results.
Pig comes with standard functions for common tasks
like averaging data, working with dates, or finding
differences between strings.

5. NoSQL
Not all Hadoop clusters use HBase or HDFS. Some
integrate with NoSQL data stores that come with their
own mechanisms for storing data across a cluster of
nodes. This enables them to store and retrieve data
with all the features of the NoSQL database, then use
Hadoop to schedule data analysis jobs on the same
cluster.
Most commonly this means Cassandra, Riak or
MongoDB, and users are actively exploring the best
way to integrate the two technologies. 10Gen, one of
the main supporters of MongoDB, for instance,
suggests that Hadoop can be used for offline analytics
while MongoDB can gather statistics from the Web in
real time.

6. Lucene/Solr
The most popular open source tool for indexing large
blocks of unstructured text is Lucene. Written in Java,
it integrates easily with Hadoop, enabling distributed,
resilient text management. Lucene handles the index-
ing; Hadoop distributes queries across the cluster.

4

Hadoop MapReduce is a software framework for easily writing applications that process vast amounts of data
(multi-terabyte datasets) in-parallel on large clusters (thousands of nodes) of commodity hardware in a reliable,
fault-tolerant manner.

5 Testing Methods, Tools and Reporting for Hadoop
MapReduce Processes

A MapReduce job usually splits the input data-
set into independent chunks that are processed
by the map tasks in a completely parallel
manner. The framework sorts the outputs of the
maps, which are then input to the reduce tasks.
Typically both the input and the output of the job
are stored in a file system. The framework takes
care of scheduling tasks and monitoring them,
and re-executes the failed tasks.

The MapReduce framework runs on the same
nodes where the data is stored, usually in
HDFS. This configuration allows the framework
to effectively schedule tasks on the nodes
where data is already present, resulting in very
high aggregate bandwidth across the cluster.

In Hadoop 1, MapReduce was essentially the
only computational framework. In Hadoop 2,
YARN ("Yet Another Resource Negotiator") was
introduced to support a variety of frameworks,
including MapReduce. The computation frame-
work now consists of a single master Resource
Manager, per- node Node Managers, and a
framework-specific ApplicationMaster responsi-
ble for negotiating with the Resource Manager
for containers with the required resources, and
working with the Node Managers to execute and
monitor those resource containers. An applica-
tion, via the ApplicationMaster, asks for contain-
ers with a specific number of CPUs, memory,
etc., and then the Node Managers of each node
that will be participating in the computation
provision them.

5.1 Methods and Tools

1. MRUnit - Unit testing for MR jobs
MRUnit is a tool that was developed by Cloudera and
released back to the Apache Hadoop project. It can
be used to unit-test map and reduce functions.
MRUnit lets users define key-value pairs to be given
to map and reduce functions, and it tests that the
correct key-value pairs are emitted from each of
these functions. MRUnit tests are similar to traditional
unit tests in that they are simple, isolated, and don't
require Hadoop to be running.

A Primer on Big Data Testing

11©QA Consultants 2015

5
2. Local job runner testing - Running MR jobs on a
single machine in a single JVM
Traditional unit tests and MRUnit tests should do a
sufficient job of detecting bugs early, but neither will test
MR jobs with Hadoop. The local job runner lets you run
Hadoop on a local machine, in one JVM, making MR jobs
a little easier to debug in the case of a job failing.

To enable the local job runner, set "mapred.job.tracker" to
"local" and "fs.default.name" to "file:///some/local/path" -
which are the default values.

Running bin/hadoop will start a JVM and will run your job
for you. Creating a new hadoop-local.xml file is recom-
mended. You can then use the -config parameter to tell
bin/hadoop which configuration directory to use. If you'd
rather avoid fiddling with configuration files, you can
create a class that implements Tool and uses Tool
Runner, and then run this class with bin/hadoop jar foo.jar
com.example.Bar -D mapred.job.tracker=local -D fs.de-
fault.name=file:/// (args) where Bar is the Tool implemen-
tation.

To start using the local job runner to test your MR jobs in
Hadoop, create a new configuration directory that is local
job runner enabled and invoke your job as you normally
would, remembering to include the -config parameter,
which points to a directory containing your local configu-
ration files. The user will have to ensure that input files
are set up correctly and output directories don't exist
before running the job.

The -conf parameter also works in 0.18.3 and lets you
specify your hadoop-local.xml file instead of specifying
a directory with -config.

The difficulty with this form of testing, however, is verify-
ing that the job ran correctly. Simply basing success on
exit codes isn't quite good enough. At the very least, you'll
want to verify that the output of your job is correct. You
may also want to scan the output of bin/hadoop for
exceptions. You should create a script or unit test that
sets up preconditions, runs the job, diffs actual output
and expected output, and scans for raised exceptions.
This script or unit test can then exit with the appropriate
status and output specific messages explaining how the
job failed.

12 ©QA Consultants 2015

A Primer on Big Data Testing

5
3. Pseudo-distributed testing - Running MR jobs on a
single machine using Hadoop
The local job runner lets you run your job in a single
thread. Running an MR job in a single thread is useful for
debugging, but it doesn't properly simulate a real cluster
with several Hadoop daemons running (e.g. NameNode,
DataNode, TaskTracker, JobTracker, SecondaryNameNo-
de). A pseudo-distributed cluster is composed of a single
machine running all Hadoop daemons. This cluster is still
relatively easy to manage (though harder than local job
runner) and tests integration with Hadoop better than the
local job runner does.

To start using a pseudo-distributed cluster to test your
MR jobs in Hadoop, follow the aforementioned instruc-
tions for using the local job runner, but in your precondi-
tion setup include the configuration and startup of all
Hadoop daemons. Then, to start your job, just use
bin/hadoop as you would normally.

6.1 Methods

The major part of the data warehouse system is data
extraction, transformation and loading (ETL). The goal is
to extract the data, often from a variety of different
systems, and transform it so that it is uniform in terms of
format and content, and, finally, to load the data into a
warehouse where it can serve as the basis for business
intelligence needs.

The integrity of the data must be maintained at every
step. It must be stored clearly and concisely without loss,
and should be accessible to all authorized professionals.
So, for the data warehouses to deliver value, they require
careful ETL testing to ensure that processes work as
required.

4. Full integration testing - Running MR jobs on a QA
cluster
Probably the most thorough yet most cumbersome
mechanism for testing your MR jobs is to run them on a
QA cluster composed of at least a few machines. By
running your MR jobs on a QA cluster, you will be testing
all aspects of both your job and its integration with
Hadoop.

Running your jobs on a QA cluster has many of the same
issues as the local job runner. For example, you will have
to check the output of your job for correctness. You may
also want to scan the stdin and stdout produced by each
task attempt, which will require collecting these logs in a
central place and grepping them. Scribe is a useful tool
for collecting logs, though it may be superfluous depend-
ing on your QA cluster.

The different methods for ETL testing depend on the
challenges faced in performing this testing. The following
are some of the main challenges to overcome.

 No user interface - In data warehouse testing, no user
interface is present but only data and its relationships
are there. In order to test this type of data, the ability to
look at data, validate data processing rules, and
analyze final data output are required. Consequently,
knowledge of database query languages like SQL is
essential for testers to do this accurately, where
traditional manual testing skills are not enough.

 Huge volume of data - Millions of transactions can be
happening every day. It is a challenge to verify the
extraction, transformation and loading of that data in
the real-time environment as the code is updated.

Testing Methods, Tools and Reporting for Data
Extract and EDW Loading
As the Big Data technology and services market is showing a huge annual growth rate worth billions of dollars, data
warehouses have a vital role to play in Big Data. Companies rely on data warehouses as they have to collect informa-
tion on their business operations, markets and client behavior to identify patterns, and collect the results to identify
more business opportunities and operational improvements.

6

 Variety of sources - Typically, a wide variety of
systems feed daily transactional data to a data ware-
house. Some of the data may even come from
systems used in cloud computing or hosted by a third
party. Similarly, the format and content of the data will
vary. It is often a huge challenge to merge the data
while making sure that everything gets processed
consistently and in relation to each other.

 Bad or missing data - The information collected from
the various source systems may not be complete,
may have many special cases requiring exception
processing, or may be of poor quality generally.

 Non-static rules - The source systems will likely
change over time as a result of release upgrades with
attendant changes in data content and structure.
There should be ways to cope with these changes
without having to change the design of the data ware-
house.

6.2 Different methods for ETL
testing

There are two high-level approaches to ETL data valida-
tion, as follows.
 Method I: The data in the data sources is validated

directly in the data warehouse. This approach
validates that all the data in the source appears in the
data warehouse according to the business rules. This
approach does not validate the intermediate staging
area and transformation processes between the
source and data warehouse.

 Method II: The data is validated from the data sourc-
es through each step of the extract, including the final
load in the data warehouse. Also, the data is validated
at each transformation. For example, in the first stage,
data is extracted from the file and checked for
completeness. In a second stage, any unwanted/junk
information is removed that is not needed to be
processed. In a third stage, data translation is
performed to clean it and make it uniform.

As in the second method, each step in the process needs
to be verified. It is more time-consuming but makes it
much easier to track down any problems that occur. On
the other hand, the first method is less time-consuming,
but any errors are more difficult to track down.

6.3 Areas of ETL testing

There are a lot of areas to be tested in the whole
process of ETL.
 Is expected data coming from the source file? After

the data has been loaded, a full inventory must be
completed to ensure that the correct records made it
into the right tables.

 Are all the records in the correct place? It is also
important to confirm that the correct numbers of
records are being processed and that each data field
from each source loads in the right order.

 Check for duplicate data. It is important that a check
for duplicates is performed as data moves across
landing, staging, and finally into the data warehouse.

 Are all data transformation rules correct? It must be
verified that the transformation rules include all
possible cases and treat them correctly.

 Does system generate error logs? In case of a
system crash or a power outage, it is important to
verify that the system does not lose data or create
duplicates if restarted. Key facts about each run
should be logged for future analysis.

 Performance monitoring. It is important to track the
performance of ETL operations over time to predict
growth rates and increase system resources if
necessary in advance of the development of bottle-
necks.

 Is data being filtered correctly? Sometimes the data
may be problematic and needs to be skipped for the
time being while the processing carries on for the
balance of the data. The system must log the reject-
ed data and possibly set it aside for further investiga-
tion before attempting again to process it.

6.4 Tools

There are many commercial ETL tools available on the

market. Some of them are described here.

1. SQL Server Integration Services (SSIS): SSIS tools
connect and transform a variety of data sources.

2. Informatica PowerCenter: Informatica is a unified
enterprise data integration platform for accessing,
discovering and integrating data from virtually any
business system, in any format.

A Primer on Big Data Testing

13©QA Consultants 2015

6

14 ©QA Consultants 2015

A Primer on Big Data Testing

6
3. OpenText Integration Center: This tool offers a data

and content integration platform that unifies informa-
tion that crosses application boundaries, consolidat-
ing and transforming data and content throughout the
entire information ecosystem.

4. Cognos Data Manager: This tool is provided by IBM.
It provides dimensional ETL capabilities for high-per-
formance business intelligence.

5. SAP Data Services: This tool allows organizations to
easily explore, extract, transform and deliver data
anywhere, at any frequency. It ensures the integrity of
the data, maximizes developer productivity, and
accelerates data integration performance for all
operational and analytic initiatives.

Firms may commonly apply analytics to business data, to
describe, predict and improve business performance.
Specifically, areas within analytics include predictive
analytics, enterprise decision management, retail analyt-
ics, store assortment and stock-keeping unit optimiza-
tion, marketing optimization and marketing mix model-
ing, web analytics, sales force sizing and optimization,
price and promotion modeling, predictive science, credit
risk analysis, and fraud analytics. Since analytics can
require extensive computation, the algorithms and
software used for analytics often employ the most
current methods in computer science, statistics, and
mathematics.

The value and insights that Big Data bring can only be
realized by effective presentation and visualization of
information for your business. Visual representations
help you see patterns in the data that make it easier to
make meaningful decisions. The data is usually
displayed in one of the following forms.

 Dashboards: High level representations of key
business performance indicators used to measure
financial performance, internal operations, product
innovation, and/or customer satisfaction

 SAP Data Services provide pervasive, open and
extensible on-premise and cloud source and target
support - structured, text, Big Data, social, spatial,
SAP and non-SAP.

6. Oracle Warehouse Builder (OWB): This tool takes raw
data, typically in different formats and different
systems, and transforms it into high-quality informa-
tion that is optimized for business reporting and
analytics.

 Data Mining: Providing tools and a process for statis-
tically analyzing large quantities of data to uncover
patterns and predict trends

 Reporting: Including ad-hoc, operational, embedded,
and production reports

 Interactive analysis: For multi-dimensional views of
data through data aggregation and drill-down

7.1 Four Big Data reporting
 strategies

1. Performance Management
 Performance management involves understanding
the meaning of Big Data in company databases using
predetermined queries and multidimensional analysis.
The data used for this analysis is typically transactional,
e.g. years of customer purchasing activity, or inventory
levels and turnover. Ideally managers can ask questions,
such as which are the most profitable customer
segments, and get answers in real time that can be used
to help make short-term business decisions and
longer-term plans.

Testing Methods, Tools and Reporting on Analytics
Analytics is a multi-dimensional discipline. It involves extensive use of mathematics and statistics, as well as descrip-
tive techniques and predictive models to gain valuable knowledge from data. Big Data analytics refers to the process
of collecting, organizing and analyzing large sets of data to discover patterns and reporting useful information.

7

Most business intelligence tools today provide a
dashboard capability. The user, often the manager or
analyst, can choose which queries to run, and can filter
and rank the report output by certain dimensions (e.g.
region), as well as drill down/up on the data. Multiple
types of reports and graphs make it easy for managers
to look at trends.

2. Data Exploration
Data exploration makes heavy use of statistics to

experiment and get answers to questions that managers
might not have thought of previously. This approach
leverages predictive modeling techniques to predict user
behavior based on their previous business transactions
and preferences. Cluster analysis can be used to
segment customers into groups based on similarity in
ways that may not be obvious a priori. Once these groups
are discovered, managers can perform targeted actions
such as customizing marketing messages, differentiating
services, and cross/upselling to each unique group.

3. Social Analytics
Social analytics measure the vast amount of

non-transactional data that exists today. Much of this
data exists on social media platforms, such as conversa-
tions and reviews on Facebook, Twitter and Yelp.

Social analytics measure three broad categories:
awareness, engagement and word-of-mouth or reach.
Awareness looks at the exposure or "mentions" of social
content and often involves metrics, such as the number
of video views and the number of followers or communi-
ty members. Engagement measures the level of activity
and interaction among platform members, such as the
frequency of user-generated content. Social analyzers
need a clear understanding of what they are measuring.
For example, a viral video that has been viewed 10
million times is a good indicator of high awareness, but it
is not necessarily a good measure of engagement and
interaction.

4. Decision Science
Decision science involves experiments and analysis

of non-transactional data, such as consumer¬generated
product ideas and product reviews, to improve the
decision-making process.

Decision scientists, in conjunction with community
feedback, determine the value, validity, feasibility and fit
of these ideas and eventually report on if or how they plan
to put these ideas into action.

Organizations need effective testing in all these
domains.

7.2 Methodology for report
 testing

Big Data analytics solutions are built to report and
analyze data from data warehouses. They can vary in
size and complexity depending on the needs of the
business, underlying data stores, number of reports and
number of users. The key focus is on validating layout
format as per the design mock-up, style sheets, prompts
and filter attributes and metrics on the report. Verification
of drilling, sorting and export functions of the reports in
the Web environment is also done. Data generated on
the reports should be correct as per business logic. The
test team needs to target the lowest granularity that is
present in the data warehouse, understanding each
report and the linkages of every field displayed in the
report with the schema (star and snow). Tracing its origin
back to the source system is a big challenge and a
time-consuming process.

Building such a reporting solution isn't trivial, and
testing the solution for release sign-off isn't, either. One of
the challenges a test manager faces is what to test, or,
more precisely, what not to test. While in reality every
report can be tested, doing so increases the project
budget and timeframes.

When it comes to the actual validation of the data in a
data warehouse, the testing approach is well- defined
and time-tested. The tester has the option of using either
a sampling strategy or performing exhaustive verification.
Given the large data volumes involved, the decision as to
which strategy to take for any given dataset is best made
using a "risk-based testing" technique to assess and
prioritize the test scope to consider the associated
business risk that could arise from errors in the data. The
primary purpose of this technique is to perform effective
testing within the limited timeframe and limited resources
available for testing by working through the prioritized list
in the order of high to low risk scope items.

A Primer on Big Data Testing

15©QA Consultants 2015

7

16 ©QA Consultants 2015

A Primer on Big Data Testing

7
Identifying the test scope and carrying out the risk

assessment are two significant activities that should
collectively be performed by the project team members.
It is important to include a cross¬section of the project
team to get a good balance of experience and knowl-
edge of the systems and business. Each item should be
assessed for complexity and business risk factors (e.g.
data sensitivity and impact on reputation). This informa-
tion will be used when estimating the required testing
effort.

These should be quantified, considering the likelihood
of the risk occurring and the impact of the risk in terms of
cost, time and quality, and rating them on a scale of 1 to
5. The rating scale of 1 for the likelihood represents
least likely and 5 represents most likely. The rating scale
of 1 for impact represents least significant impact and 5
represents the most significant. Risk exposure is calcu-
lated by multiplying the likelihood and the impact.

Once the risk exposure assessment is completed, the
team categorizes the test scope items into high, moder-
ate or low-risk groups, and determines an appropriate
combination of testing techniques, such as basic unit
testing, partial system testing or full user acceptance
testing. Each testing type (i.e. unit testing, system
testing and user acceptance testing) can be broken
down into basic, partial and full testing.

1. Validating the Dashboard Report Model

The design of these reports is critical understanding for
the tester. Insight such as what content uses which
information maps, what ranges are leveraged in which
indicators, and where interactions exist between indica-
tors is required to build a full suite of test cases. If any
measures are defined in the report itself, these should be
verified as accurate - but all other data elements that are
pulled straight from the table/information map should
already have been validated from one of the above two
sections.

It is essential to address:
 Understanding each report and the mapping of every

field displayed in the report with the schema, tracing its
origin back to the source system

 Verification of the GUI: layout format, style sheets,
prompts and filters attributes and metrics on the report
as per mock ups

 Verification of drilling (drill down, drill through), sorting
and export functions of the reports, including testing of
different data sets (different regions, periods of time)
and usability testing

 Verification of the data at the lowest granularity level
that is present in the data warehouse against the
report using data validation

 Verification of report format and content by appropri-
ate end users

 Verification of accuracy and completeness of the
scheduled reports

 Analytics are working
 Previewing and/or exporting of reports to different

formats, such as spreadsheet, pdf, html and email to
ensure they display accurate and consistent data

 Print facility, where applicable, produces expected
output

 Where graphs and data exist in tabular format, both
should reflect consistent data

 Table analysis
 ■ Business rule analysis
 ■ Functional dependency
 ■ Column set analysis

An example of the system risk assessment is shown below.

High

 Test Scope Items

Moderate

Low

 Test Scope Items

Test
Scope
Items

Impact

Li
ke

lih
oo

d

2. Checking the Source Record Count and Target
Record Count
 Verifying the source record count and target record

count match
 Data consistency validation

3. Authentication Testing
Authentication testing is the process used to verify that
only authorized users can access the system.

4. Data Level Security
Authorization is the process used to verify that a user
has been granted sufficient privileges to perform the
requested action.

Data level security validation means users will be
able to see only particular data for the given permis-
sion. For example, both the Eastern and Western
region sales managers will be seeing the same
reports but the data visible to them in the reports will
be Eastern and Western region sales data respective-
ly. Object level security means to validate whether the
particular user is able to access the particular dash-
board or folder, etc.

5. Bursting the Reports
Bursting the reports means distributing the reports
based on the regions, e.g. if there are four regional
reports, ensure that the reports are properly distribut-
ed to (and only to) the appropriate parties.

6. Buzz Matrix Validation
Alerting also needs to be validated, i.e. that the alerts
are produced and delivered when any variables being
tracked cross their alerting thresholds.

7. User Acceptance Criteria
Users typically have an existing legacy mechanism to
verify if what is displayed in the new solution makes
sense. One should dig into this and understand how
the end users built the project acceptance criteria.
Testers should challenge the assumptions made by
the business community in deriving the acceptance
criteria. This activity helps get an end-user perspective
built into the testing efforts from early on.

8. Time Series Functions Validation
Time series functions provide the ability to compare
business performance with previous time periods,
allowing the analysis of data that spans multiple time
periods. These will also need to be verified for correct
functioning.

9. End-to-End Testing
Although individual components of the Big Data
system may be behaving as expected, there may be
issues in how those components interact dynamically.
Thus, execution and validation of end-to-end runs are
recommended. Along with data reconciliation discrep-
ancies, issues such as resource contention or dead-
locks might surface. The end-to-end runs will further
help in ensuring the data quality and performance
acceptance criteria are met.

7.3 Apache Falcon

Falcon simplifies the development and management of
data processing pipelines with a higher layer of abstrac-
tion, taking the complex coding out of data processing
applications by providing out-of-the-box data manage-
ment services. This simplifies the configuration and
orchestration of data motion, disaster recovery and data
retention workflows.

A Primer on Big Data Testing

17©QA Consultants 2015

7

Chart courtesy of Daystrom.com

Falcon runs as a standalone server as part of your
Hadoop cluster. Falcon is a data feed processing and
management system aimed at bringing more rigorous
data governance to Hadoop.

Process
Status
{JMS}

Entity
Specifications
{CLI or Rest}

18 ©QA Consultants 2015

A Primer on Big Data Testing

7
Apache Falcon meets enterprise data governance
needs in three areas.

1. Centralized data life cycle management
 Centralized definition and management of pipelines

for data ingest, process and export
 Disaster readiness and business continuity
 Out-of-the-box policies for data replication and reten-

tion
 End-to-end monitoring of data pipelines

2. Compliance and audit
 Visualize data pipeline lineage
 Track data pipeline audit logs
 Tag data with business metadata

3. Database replication and archival
 Replication across on-premises and cloud-based

storage targets: Microsoft Azure and Amazon S3
 Data lineage with supporting documentation and

examples
 Heterogeneous storage tiering in HDFS
 Definition of hot/cold storage tiers within a cluster

Falcon provides a single interface to orchestrate data life
cycle across clusters. It provides the key services data
processing applications needed so sophisticated data life
cycle management can easily be added to Hadoop
applications. Complex data-processing logic is handled
by Falcon instead of hard¬coded in apps. There is faster
development and higher quality for ETL, reporting and
other data- processing apps on Hadoop.

8.1 Performance testing

Through performance testing in Big Data applications,
we can achieve the following objectives.
1. Obtain and understand the actual performance under

load of Big Data applications, such as response time,
maximum online user data capacity size, and
maximum processing capacity

2. Identify performance limits and conditions that can
cause performance problems

3. Gain insight that could be used to optimize parameters
that influence performance (e.g. hardware configura-
tion, software configuration and application code)

Performance testing should be conducted by setting up
large volumes of data with an environment similar to
production. In addition to the usual performance metrics
such as job completion time, data throughput and
memory utilization, the following should also be noted
and/or tracked.
 Data storage
 Commit logs
 Concurrency
 Caching

8.2 Failover testing

Hadoop installations typically have dozens or hundreds,
if not thousands of nodes, each with four or more disk
drives. Some disk drives or even entire nodes will fail
every week. HDFS architecture is designed to detect
these failures and automatically recover to proceed with
processing despite these failures. Failover testing
validates the recovery process and ensures data
processing continues correctly when switched to other
data nodes.

As Hadoop involves radically different architectures
from traditional information-processing systems, verifica-
tion of the design and configuration is critical. The
NameNode, in particular, remains a single point of failure
and should be maintained in a high availability configura-
tion and submitted to appropriate failover testing.

Testing Methods, Tools and Reporting on Performance
and Failover Testing8

 JVM parameters
 MapReduce configuration
 Message queue configuration

The following industry-standard tools can be used to
carry out performance and failover testing.
 Performance test tools
 YCSB (Yahoo Cloud Serving Benchmark),

SandStorm, JMeter
 Monitoring tools
 Nagios, Zabbix, Ganglia, JMX utilities

 Diagnostic tools
 visualVM, AppDynamics, Compuware

8.3.1 Jepsen

Modern software systems are composed of dozens of
components that communicate over an asynchronous,
inherently unreliable network. Understanding the reliabili-
ty of a dynamic distributed system requires careful analy-
sis of the reliability of the network itself. The root issue is
essentially one of shared state: a set of nodes that must
exchange information through network connections, e.g.
"Did I like that post?"; "Was my write successful?"; "Will
you thumbnail my image?"; "How much is in my
account?"

It's not just the network. Garbage collection pauses in
the JVM or heavy activity by your neighbor in a server
running on the cloud can also manifest in slowdowns that
are virtually indistinguishable from a network partition.
Even in the best-managed data centers, things go wrong;
disks fail, switches malfunction, power supplies get short-
ed out, RAM modules die, and a distributed system that
runs on a large scale should strive to work around such
issues as much as possible.

Here are some examples of the kind of questions that
need to be addressed.
 How are the states of the system causally connected?
 Will the system survive the total failure of one or more

nodes?
 Will the data survive a complete power failure?
 Will the data survive the destruction of an entire data

center?
 What if communications lines between components

are severed?
 What happens if data communications degrade badly

so some messages are delivered but not all?

8.3 Methods and tools

While it is important to have some testing of newly
installed systems, many of the important performance
tests that need to be carried out on Big Data systems will
be more realistic with a populated installation. Virtual
machines and the ability to "snapshot" and roll back to a
known hard disk state are very useful tools for this kind of
operation in smaller scale testing, but are of limited use
for Big Data tests given the scale of storage involved. In
order to overcome this problem, we can make use of
various techniques to pre-populate data into the system
before executing new tests.

Some possible techniques are:
 Static Installation - Configuring the software against a

static, "read-only" installation can be useful for testing
query performance against a known dataset for
performance benchmarking.

 Backup/Restore - Using the backup/restore and
disaster recovery features of the system to restore an
existing installation in a known state. As well as being
an excellent way of restoring an installation, this also
helps to test the backup and recovery mechanisms
themselves through real use.

 Data Replication - If the software supports quick
import or replication methods, we can leverage these
to populate an installation with bulk data far more
quickly than through the standard importing interfac-
es. For example, we utilize a product feature to
support geographic replication of data across servers
to bulk insert prebuilt data into archives far more rapid-
ly than the standard import process. Once we have
reached a suitable capacity, we can then switch to
standard importing to test performance.

 Rolling Installation - Having an installation that is in a
"rolling state," whereby tests import new data and
archive out old data at a continuous rate. This allows
for testing at a known capacity level in a realistic data
life cycle without the lead time of building up an
archive for each iteration, with the additional benefit of
boosting our version of compatibility testing with an
installation that has been running over a long period of
time with many software versions.

A Primer on Big Data Testing

19©QA Consultants 2015

8

20 ©QA Consultants 2015

A Primer on Big Data Testing

8
It also creates one or more copies of a special client
called a "Nemesis," which instead of talking to a data
store, wreaks havoc in the cluster by, for example, cutting
links between nodes using IP tables. Then it proceeds to
make requests concurrently against different nodes while
alternately partitioning and healing the network. At the
end of the test run, it heals the cluster, waits for the
cluster to recover, and then verifies whether the interme-
diate and final state of the system is as expected.

The most current update can be found at
https://aphyr.com/

Source code can be obtained at
https://github.com/aphyr/jepsen

Infrastructure Setup, Design, and Implementation
Hadoop workloads tend to vary a lot and it takes experience to correctly anticipate the amounts of storage, processing
power and inter-node communication that will be required for different kinds of jobs.

For a Hadoop (or HBase) cluster, it is critical to accurately predict the size, type, frequency and latency of analysis jobs
to be run. Begin small and gain experience by measuring actual workloads during a pilot project. This way you should be
able to scale the pilot environment without making significant changes to the existing servers, software, deployment
strategies or network connectivity.

9

Jepsen is a tool that simulates network partitions and
tests how distributed data stores behave under them.
Jensen will cut off one or more nodes from talking to
other nodes in a cluster while continuing to insert,
update or look up data during the partition, as well as
after the partition heals, to find if they lose data, read
inconsistent data or become unavailable.

Jepsen works by setting up the data store under test on
five different hosts (typically Linux Containers on a
single host for simplicity). It creates a client, for the data
store under test, pointing to each of the five nodes to
send requests.

NOTE: DataNodes, TaskTrackers, and RegionServers are typically co-deployed

Add three slave nodes
(DataNodes, TaskTrackers, and
HBase RegionServers) at a time

Client
(Gateway
Node)

Hortonworks.com

9.2 Hardware selection for slave
nodes (DataNodes, Task-
Trackers and RegionServers)

Typically, dual-socket servers are optimal for Hadoop
deployments. For medium to large clusters, using these
servers is a best choice over the entry-level servers
because of the load-balancing and parallelization capa-
bilities. In terms of density, it is advisable to select server
hardware that fits into a small number of rack units.
Typically, 1U or 2U servers are used in 19" racks or
cabinets.

Storage options
For general-purpose Hadoop applications, we recom-
mend using a relatively large number of hard drives
(typically eight to twelve SATA LFF drives) per server.
It is important to note that Hadoop is storage intensive
and seek efficient, but does not require fast and
expensive hard drives. If your workload pattern is not
I/O intensive, it is safe to add only four or six disks per
node. Note that power costs are proportional to the
number of disks and not to terabytes. We therefore
recommend that you add disks for storage and not for
seeks.

Memory sizing
In a Hadoop cluster, it is critical to provide sufficient
memory to keep the processors busy without swap-
ping and without incurring excessive costs for
non-standard motherboards. Depending on the
number of cores, your slave nodes typically require 24
GB to 48 GB of RAM for Hadoop applications. For
large clusters, this amount of memory sufficiently
provides extra RAM (approximately 4 GB) for the
Hadoop framework and for your query and analysis
processes (HBase and/or Map/Reduce).

Hadoop and HBase clusters have two types of machines.
1. Masters (the HDFS NameNode, the MapReduce

JobTracker, and the HBase Master)
2. Slaves (the HDFS DataNodes, the MapReduce

TaskTrackers, and the HBase RegionServers)

The DataNodes, TaskTrackers and HBase RegionServ-
ers are co-located or co-deployed for optimal data locali-
ty. In addition, HBase requires the use of a separate
component (ZooKeeper) to manage the HBase cluster.

9.1 Hardware selection for
master nodes (NameNode,
JobTracker, HBase Master)

The master nodes, being unique, have significantly differ-
ent storage and memory requirements from the slave
nodes.

Storage options
Using dual NameNode servers is recommended - one
primary and one secondary. Both NameNode servers
should have highly reliable storage for their name-
space storage and edit-log journaling. Typically,
hardware RAID and/or reliable network storage are
justifiable options. The master servers should have at
least four redundant storage volumes, some local and
some networked, but each can be relatively small
(typically 1TB).

Memory sizing
The amount of memory required for the master nodes
depends on the number of file system objects (files
and block replicas) to be created and tracked by the
NameNode. 64 GB of RAM supports approximately
100 million files. Some sites are now experimenting
with 128 GB of RAM, for even larger namespaces.

Processors
The NameNodes and their clients are very "chatty".
We therefore recommend providing 16 or even 24
CPU cores to handle messaging traffic for the master
nodes.

A Primer on Big Data Testing

21©QA Consultants 2015

9

22 ©QA Consultants 2015

A Primer on Big Data Testing

9
3. It is critical to distribute the network workload evenly

across the cluster. It is important to understand the
use case and communication patterns across the
Hadoop components, such as the replication factors,
NameNode and Job Tracker placements, and cluster
size dependencies on the mappers to reducers ratios.
For example, unless you are in a small test environ-
ment, it is asking for trouble to deploy Hadoop in
production with a single reducer process.

4. In general, storage for Hadoop deployments is always
local disks and/or JBOD attached. SAN attached
Hadoop clusters would not work. HDFS is capable of
handling huge dataset sizes distributed over large
clusters of compute, so tuning HDFS is another factor
that drives Hadoop performance. For example,
increasing the HDFS block size to 128 MB (from
default 64 MB) is a recommended best practice. Also,
backing up critical Hadoop configuration files like the
journal, checkpoint file, etc., should be built into the
operations rules.

5. Hadoop deployment requirements, use cases, tools
and application interfaces are going to vary from one
environment to other, so no one design is going to
applicable in all situations.

6. The Hadoop app/dev, testing teams and infrastructure
team (facilities/server/network) must have joint
planning meetings to strategize on the goals.

Power consideration
Power is a major concern when designing Hadoop
clusters. Instead of purchasing the biggest and
fastest nodes, it is important to analyze the power
utilization for the existing hardware. We observed
huge savings in pricing and power by avoiding the
fastest CPUs, redundant power supplies, etc. For
slave nodes, a single power supply unit (PSU) is
sufficient.

Processors
Although it is important to understand your workload
pattern, for most systems we recommend using
medium clock speed processors with less than two
sockets. For most workloads, the extra performance
per node is not cost-effective. For large clusters, use
at least two quad core CPU for the slave machines.

9.3 Infrastructure setup key
points

1. It is not a general practice to deploy Hadoop nodes
as virtual machines for many different reasons,
primarily for I/O performance and other shared
properties.

2. For performance and scale benefits, you should run
the NameNode, Secondary NameNode and/or
Checkpoint Node, Job Tracker and the HBase (or
any DB) Master as dedicated standalone nodes
where these processes are not shared with other
Hadoop processes on the same server.

23©QA Consultants 2015

Conclusion

In conclusion, if an organization applies the right test strategies
and follows best practices, it will improve Big Data testing
quality, which will help to identify defects in early stages and
reduce overall cost.

To be successful, Big Data testers have to learn the compo-
nents of the Big Data ecosystem from scratch. Since the market
has created fully automated testing tools for Big Data validation,
the tester has no other option but to acquire the same skill set
as the Big Data developer in the context of leveraging Big Data
technologies like Hadoop. This requires a tremendous mindset
shift for both testers and testing units within organizations. In
order to be competitive, companies should invest in Big
Data-specific training needs and developing the automation
solutions for Big Data validation.

23

About QA Consultants

QA Consultants is an award-winning provider of software
testing and quality assurance solutions. We are the trust-
ed testing company for businesses, government depart-
ments and institutions. Over the last 20 years we have
successfully delivered 5,000+ mission-critical projects in
the private, public and not-for-profit sectors. Within those
sectors, QA Consultants has extensive testing experi-
ence and depth in the following industries: automotive,
banking, consumer goods, insurance, media and adver-
tising, public affairs, retail, technology, and travel and
tourism.

In the ongoing effort to maintain our status as leader in
research and innovation, and with the continuing support
of the National Research Council of Canada, QAC found-
ed, developed and built a large facility in Toronto devoted
solely to testing. The Test Factory™ is a continuous quali-
ty test lab incorporating a precise combination of intelli-
gence applied to advanced levels of automation.

The Test Factory pairs the skilled labour and expertise of
our staff (mostly computer science graduates) with our
proprietary testing methodologies. This unique blend
provides our clients with unparalleled and superior quality
service. QAC's 30,000-square-foot testing facility delivers
onshore quality and performance at low offshore prices.
The Test Factory™ alone or in partnership with our Man-
aged Consulting Services and On Demand Testing™
delivers highly effective testing and QA solutions to our
wide range of clients.

